Week |3: Dynamic Memory, Linked Lists
CIT-593, Spring 2022

Sarah Santos
April 13,2022

What is the heap?

A region of memory used for dynamic memory allocation

&l OxFFFFFFFF

OS Kernel Space
1 GB — User code cannot read from nor write to these addresses,
otherwise resulting in 2 Segmentation Fault

‘ Stack ‘

Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

0xC0000000

t Heap 1

3 GB —_ Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

Uninitialized static variables, filled with zeros

Text

Binary image of the process (e.g., /bin/1s]
i oia Prpsess (¢) 0x08048000

0x00000000

image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

% Penn Engineering 2

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

A region of memory used for dynamic memory allocation

p—

OXFFFFFFFF
OS Kernel Space Higher Addresses
1 GB — User code cannot read from nor write to these addresses,

otherwise resulting in 2 Segmentation Fault

0xC0000000

‘ Stack ‘ T

Automatic variables (local to a function's scope), caller’s return address, etc.

(grows towards lower memory addresses) - M .
.................................... _—
| ——
g o
Note: This image is flipped
compared to how Dr.
Farmer draws memory, | [0 g g N
nemory, f vt =
but the stack still ‘grows 3 GB — | Omemicmemonaliocation trough malloc/new free/delete ENannen
' (grows towards higher memory addresses) ﬁ“l@ﬁ"' |
towards 0 -
BSS
Uninitialized static variables, filled with zeros
Text
Binary image of the process (e.g, /bin/1s) 0x08048000
G Lower Addresses

image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

?@ Penn Engineering

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

= OxFFFFFFFF
OS Kernel Space
1 ¢cB e st e e e Large Block of unorganized Memory
RS o As opposed to the stack, with its stack frames

‘ Stack ‘

Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

t Heap 1

3 GB —_ Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

BSS
Uninitialized static variables, filled with zeros
Data
Text
Bis f B
inary image of the process (e.g., /bin/1s) 0x08048000
0x00000000
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 4

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

&l OxFFFFFFFF

B OS Kernel Space .
1 ¢cB B e LorC e I o e large Block of unorganized Memory

otherwise resulting in 2 Segmentation Fault
As opposed to the stack, with its stack frames
‘ Stack ‘

Automatic variables (local to a function's scope), caller’s return address, etc. ™ Memory management done b)l programmer
(grows towards lower memory addresses)

0xC0000000 0]

t Heap 1

3 GB —_ Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

Uninitialized static variables, filled with zeros

Text

Binary image of the process (e.g., /bin/1s]
i oia Prpsess (¢) 0x08048000

0x00000000
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 5

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

= OxFFFFFFFF
1 GB — OS Kernel Space)
e st e e e Large Block of unorganized Memory
1 1 RS o As opposed to the stack, with its stack frames
Stack
Automatic variables (local to a function's scope), caller’s return address, etc. [] Memory management done by Programmer

(grows towards lower memory addresses)

""""""""""""""""""""" e Heap memory persists outside scope of function!
o Stack frames destroyed when function returns

t Heap 1

3 GB —_ Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

BSS
Uninitialized static variables, filled with zeros
Data
Text
Bis f B
inary image of the process (e.g., /bin/1s) 0x08048000
0x00000000
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 6

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

How do we interact with the heap!?

Two Main Functions

Helper Function

% Penn Engineering 7

How do we interact with the heap!?

Two Main Functions
memory allocation

memory deallocation

Helper Function

returns size of data type in bytes

% Penn Engineering 8

How do we interact with the heap!?

Two Main Functions
void *malloc(size t size); memory allocation

void free(void *ptr); memory deallocation

Helper Function

size t sizeof (type); returns size of data type in bytes

% Penn Engineering 9

vold *malloc(size t size)

e So far:size of array must be known at runtime
— Memory allocated on stack

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 10

vold *malloc(size t size)

e So far:size of array must be known at runtime
— Memory allocated on stack
e Don’t know array size at runtime? Use malloc()!

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

& Penn Engineering ¥

vold *malloc(size t size)

e So far:size of array must be known at runtime
— Memory allocated on stack

e Don’t know array size at runtime? Use malloc()!

e Allocates contiguous block of memory in heap

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 12

vold *malloc(size t size)

e So far:size of array must be known at runtime
— Memory allocated on stack

e Don’t know array size at runtime? Use malloc()!

e Allocates contiguous block of memory in heap

e Returns pointer to allocated memory

% Penn Engineering

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

vold *malloc(size t size)

o Use sizeof (type) to get the size of a type

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 14

vold *malloc(size t size)

o Use sizeof (type) to get the size of a type
e Recall: void* is a generic pointer type
e May need to cast memory to our desired type

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 15

vold *malloc(size t size)

Use sizeof (type) to get the size of a type
Recall: void™ is a generic pointer type

May need to cast memory to our desired type

...but we can usually just do something like this:

int* intArray = malloc(sizeof(int) * n);

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 16

Check what malloc() returns!

Always check the return value

o Returns a pointer to the memory block if success
o Returns null pointer if failed

Adapted from slides by Ludwig Zhao and Dr.

& Penn Engineering 17

Check what malloc() returns!

Always check the return value

o Returns a pointer to the memory block if success
o Returns null pointer if failed

Example from lecture:
int length = 2;
int* int array = NULL;

int array = malloc (length * sizeof (int)) ;
if (int array == NULL) return 1 ;

Adapted from slides by Ludwig Zhao and Dr.
Farmer

& Penn Engineering 18

Check what malloc() returns!

Always check the return value

o Returns a pointer to the memory block if success
o Returns null pointer if failed

Example from lecture:
int length = 2;
int* int array = NULL;

int array = malloc (length * sizeof (int)) ;
if (int array == NULL) return 1 ;

Adapted from slides by Ludwig Zhao and Dr.
Farmer

& Penn Engineering 19

vold free (void *ptr)

The bread to malloc’s butter

® Frees memory allocated by malloc() call

% Penn Engineering

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

20

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

vold free (void *ptr)

The bread to malloc’s butter

® Frees memory allocated by malloc() call

e Every malloc() must be free()’d eventually

— Else: memory leaks!

% Penn Engineering

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

21

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

vold free (void *ptr)

The bread to malloc’s butter

® Frees memory allocated by malloc() call

e Every malloc() must be free()’d eventually

— Else: memory leaks!

e Memory is freed, but technically speaking..

% Penn Engineering

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

22

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

vold free (void *ptr)

The bread to malloc’s butter

® Frees memory allocated by malloc() call
e Every malloc() must be free()’d eventually
— Else: memory leaks!

e Memory is freed, but technically speaking..
— Pointer value on stack not modified (too much

overhead)
e ie.left your table at restaurant, but you still have the “text
reminder about your reservation”

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

% Penn EI].g]neer]I]g Adapted from slides by Makarios Chung, 23

Alexandra Ulven, and Daniel Sullivan

vold free (void *ptr)

The bread to malloc’s butter

® Frees memory allocated by malloc() call
e Every malloc() must be free()’d eventually
— Else: memory leaks!

e Memory is freed, but technically speaking..

— Pointer value on stack not modified (too much
overhead)
e ie.left your table at restaurant, but you still have the “text
reminder about your reservation”
— Allocation on heap no longer valid for use
* ie.left your table at restaurant, but your dirty dishes and
food scraps still there until cleaned

S e R =
& -

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

W €nn n‘g]neerlrlg Adapted from slides by Makarios Chung, 24

Alexandra Ulven, and Daniel Sullivan

vold free (void *ptr)

® Do not free() memory not returned by malloc()
e Bad:

int 1] = {1, 2, 3, 4, 5};

free(*i); // DO NOT DO THIS
e Good:

int* iIntArray = malloc(sizeof(int) * 5);

free(intArray);

Adapted from slides by Makarios Chung,

s s N .
L& Penn EI].g]neerlI].g Alexandra Ulven, and Daniel Sullivan 25

Tips when calling free()

Always deallocate all the memory blocks before exit

® Do not deallocate the same memory blocks twice
e Set freed ptr to NULL ptr

free(linkedList) ;
linkedList = NULL;

Adapted from slides by Ludwig Zhao

& Penn Engineering 26

What is a linked list?

A data structure that uses dynamically allocated memory

& Penn Engineering 27

What is a linked list?

A data structure that uses dynamically allocated memory

second node

Linked list node

third node
first node ¢

Pointerto next node Pointer to next node

% Penn Engineering 28

What is a linked list?

A data structure that uses dynamically allocated memory

second node

Linked list node

¢ third node

first node

K 4 31 Bk 4 W i
| think this is the head of
the train?

Pointer to next node

Pointerto next node

Pointer to head
of linked list

% Penn Engineering

The caboose is the
NULL pointer signalling
the end of the train
(linked list)

caboose

29

What is a linked list?

DATA REF —> DATA REF —> DATA REF

!

DATA REF mmmme NULL

(tail)

here is a cleaner train cartoon and diagram!

e Head pointer points to the first node (never lose your head
pointer!)

Adapted from slides by Ludwig Zhao

& Penn Engineering 30

What is a linked list?

DATA REF —> DATA REF —> DATA REF

!

DATA REF mmmme NULL

(tail)
here is a cleaner train cartoon and diagram!
e Head pointer points to the first node (never lose your head
pointer!)
e FEach node has the data field(s) and a pointer points to the next
node, next

Adapted from slides by Ludwig Zhao

& Penn Engineering 3]

What is a linked list?

DATA REF —> DATA REF —> DATA REF

!

DATA REF mmmme NULL

(tail)
here is a cleaner train cartoon and diagram!
e Head pointer points to the first node (never lose your head
pointer!)
e FEach node has the data field(s) and a pointer points to the next
node, next

® The last node has the next pointer points to null ptr

Adapted from slides by Ludwig Zhao

& Penn Engineering 32

Other notes on linked lists

® As program runs, memory is dynamically allocated

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 33

Other notes on linked lists

® As program runs, memory is dynamically allocated
e More efficient:

o All memory allocated is used

o Can grow/shrink data structure as needed

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 34

Other notes on linked lists

® As program runs, memory is dynamically allocated
e More efficient:

o All memory allocated is used

o Can grow/shrink data structure as needed
e Cons:

o Annoying to traverse

o Need to know how to work with pointers

“pointers put the link in linked lists”

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 35

addTol.ist.c

Sample Code Discussion

1!!5%1!1

T Penn
@ Engincering

We use a struct to create nodes

int age;

age
char *name;
struct studentStruct *next; name - char
} student;

next = student

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

& Penn Engineering 37

Heap Allocation Example

. First student;: Bob

0x4000 age 22
0x4001 name X~
0x4002 next NULL

Adapted from slides by Makarios Chung,
m P E . . Alexandra Ulven, and Daniel Sullivan
&' Fenn ngineermg 38

Heap Allocation Example

. First student;: Bob

0x4000 age 22 0x4300 ‘B’
0x4001 name 0x4300 J 0x4301 ‘0’
0x4002 next NULL 0x4302 ‘b’

2
0x4303 \0’

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan
39

% Penn Engineering

Heap Allocation Example

. First student: Bob, Second student: Tables

0x4000 age 22 0x4300 ‘B’
0x4001 name 0x4300 J 0x4301 ‘o’

0x4002 next 0x4100 0x4302 ‘b’
L/Q_/) 0x4303 N0’

0x4100 age 42

0x4101 name X +

0x4102 next NULL

Adapted from slides by Makarios Chung,

% Penn E . ee . Alexandra Ulven, and Daniel Sullivan 40

Heap Allocation Example

. First student: Bob, Second student: Tables

0x4000 age 22 0x4300 ‘B’
0x4001 name 0x4300 J 0x4301 ‘o’

0x4002 next 0x4100 0x4302 ‘b’

0x4303

i/ﬁ//

0x4100 age 42
0x4101 name 0x4400
0x4102 next NULL

% Penn Engineering

0x4400 AT

0x4401 ‘a’

0x4402 ‘b’
0x4403 T
0x4404 "8
0x4405 ‘s’
0x4406 \0’

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

41

Double Pointers

* Pointer to a Pointer

Ox7FFA Double pointer to head stack
Ox7FFB Pointer to head .

Adapted from slides by Makarios Chung,

Alexandra Ulven, and Daniel Sullivan

% Penn Engineering 42

Double Pointers

* Pointer to a Pointer

N

Ox7FFA Double pointer to head

Ox7FFB &—_ _— Pointer to head

0x4000 age 22
0x4001 name 0x4300
0x4002 next 0x4100

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan
43

% Penn Engineering

Double Pointers

* Pointer to a Pointer

N

Ox7FFA Double pointer to head Ox7FFB

Ox7FFB &—_ _— Pointer to head 0x4000

J

0x4000 age 22
0x4001 name 0x4300
0x4002 next 0x4100

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan
44

% Penn Engineering

Debugging practice

& Penn Engineering 45

