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What is the heap?
A region of memory used for dynamic memory allocation
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What is the heap?
A region of memory used for dynamic memory allocation
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Note: This image is flipped 
compared to how Dr. 
Farmer draws memory, 
but the stack still “grows 
towards 0”
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What is the heap?
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● Large Block of unorganized Memory 
○ As opposed to the stack, with its stack frames 

image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan
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What is the heap?
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● Large Block of unorganized Memory 
○ As opposed to the stack, with its stack frames 

● Memory management done by programmer 
● Heap memory persists outside scope of function! 

○ Stack frames destroyed when function returns 

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/


How do we interact with the heap?
Two Main Functions

void *malloc(size_t size);          memory allocation
void free(void *ptr);         memory deallocation

Helper Function
size_t sizeof(type);     returns size of data type in bytes
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void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack
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void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()! 
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void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()! 
● Allocates contiguous block of memory in heap
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void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()! 
● Allocates contiguous block of memory in heap 
● Returns pointer to allocated memory 
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void *malloc(size_t size)

● Use sizeof(type) to get the size of a type 
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void *malloc(size_t size)

● Use sizeof(type) to get the size of a type 
● Recall: void* is a generic pointer type 
● May need to cast memory to our desired type 
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void *malloc(size_t size)

● Use sizeof(type) to get the size of a type 
● Recall: void* is a generic pointer type 
● May need to cast memory to our desired type 
● ...but we can usually just do something like this: 

int* intArray = malloc(sizeof(int) * n);
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Check what malloc() returns!
Always check the return value
○ Returns a pointer to the memory block if success
○ Returns null pointer if failed
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Check what malloc() returns!
Always check the return value
○ Returns a pointer to the memory block if success
○ Returns null pointer if failed

Example from lecture:
int length = 2;

int* int_array = NULL; 

int_array = malloc (length * sizeof(int)) ; 

if (int_array == NULL) return 1 ; 
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void free(void *ptr)
The bread to malloc’s butter 
● Frees memory allocated by malloc() call 
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free()

malloc()

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to 
make sure every malloc comes with a free. bread 
without butter is not good imo)



void free(void *ptr)
The bread to malloc’s butter 
● Frees memory allocated by malloc() call 
● Every malloc() must be free()’d eventually 

– Else: memory leaks!
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● Every malloc() must be free()’d eventually 

– Else: memory leaks!
● Memory is freed, but technically speaking..
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void free(void *ptr)
The bread to malloc’s butter 
● Frees memory allocated by malloc() call 
● Every malloc() must be free()’d eventually 

– Else: memory leaks!
● Memory is freed, but technically speaking..

– Pointer value on stack not modified (too much 
overhead) 
• i.e. left your table at restaurant, but you still have the “text 

reminder about your reservation”
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void free(void *ptr)
The bread to malloc’s butter 
● Frees memory allocated by malloc() call 
● Every malloc() must be free()’d eventually 

– Else: memory leaks!
● Memory is freed, but technically speaking..

– Pointer value on stack not modified (too much 
overhead) 
• i.e. left your table at restaurant, but you still have the “text 

reminder about your reservation”
– Allocation on heap no longer valid for use 

• i.e. left your table at restaurant, but your dirty dishes and 
food scraps still there until cleaned

24

free()

malloc()

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to 
make sure every malloc comes with a free. bread 
without butter is not good imo)



void free(void *ptr)

● Do not free() memory not returned by malloc()
 
● Bad: 

int i[] = {1, 2, 3, 4, 5}; 

free(*i); // DO NOT DO THIS 

● Good: 
int* intArray = malloc(sizeof(int) * 5); 

free(intArray);

25Adapted from slides by Makarios Chung, 
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Tips when calling free()
Always deallocate all the memory blocks before exit 
● Do not deallocate the same memory blocks twice 
● Set freed ptr to NULL ptr

free(linkedList);

linkedList = NULL;

26Adapted from slides by Ludwig Zhao



What is a linked list?
A data structure that uses dynamically allocated memory
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What is a linked list?
A data structure that uses dynamically allocated memory
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I think this is the head of 
the train?

The caboose is the 
NULL pointer signalling 
the end of the train 
(linked list)

Pointer to head 
of linked list

NULL 
POINTER

next

first node

second node

third node



What is a linked list?
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DATA REF DATA REF DATA REF DATA REF

value address

NULL 

head

(tail)

● Head pointer points to the first node (never lose your head 
pointer!) 

here is a cleaner train cartoon and diagram!
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What is a linked list?
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DATA REF DATA REF DATA REF DATA REF

value address

NULL 

head

(tail)

● Head pointer points to the first node (never lose your head 
pointer!) 

● Each node has the data field(s) and a pointer points to the next 
node, next

● The last node has the next pointer points to null ptr

here is a cleaner train cartoon and diagram!

Adapted from slides by Ludwig Zhao



Other notes on linked lists
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● As program runs, memory is dynamically allocated 
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Other notes on linked lists

34

● As program runs, memory is dynamically allocated 
● More efficient: 

○ All memory allocated is used 
○ Can grow/shrink data structure as needed 
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Other notes on linked lists
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● As program runs, memory is dynamically allocated 
● More efficient: 

○ All memory allocated is used 
○ Can grow/shrink data structure as needed 

● Cons: 
○ Annoying to traverse 
○ Need to know how to work with pointers

“pointers put the link in linked lists”

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan



addToList.c

Sample Code Discussion



We use a struct to create nodes
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typedef struct studentStruct { 
int age; 
char *name; 
struct studentStruct *next; 

} student; 

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan



Heap Allocation Example
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X

NULL
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Heap Allocation Example
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NULL
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Heap Allocation Example
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X

Adapted from slides by Makarios Chung, 
Alexandra Ulven, and Daniel Sullivan



Heap Allocation Example
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Double Pointers
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Double Pointers
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stack

heap
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Double Pointers
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heap

stack
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Debugging practice
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