
Week 13: Dynamic Memory, Linked Lists
CIT-593, Spring 2022

Sarah Santos
April 13, 2022

What is the heap?
A region of memory used for dynamic memory allocation

2
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?
A region of memory used for dynamic memory allocation

3

Note: This image is flipped
compared to how Dr.
Farmer draws memory,
but the stack still “grows
towards 0”

Higher Addresses

Lower Addresses
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

4

● Large Block of unorganized Memory
○ As opposed to the stack, with its stack frames

image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

5

● Large Block of unorganized Memory
○ As opposed to the stack, with its stack frames

● Memory management done by programmer

image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/ Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

What is the heap?

6
image credit: https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

● Large Block of unorganized Memory
○ As opposed to the stack, with its stack frames

● Memory management done by programmer
● Heap memory persists outside scope of function!

○ Stack frames destroyed when function returns

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

How do we interact with the heap?
Two Main Functions

void *malloc(size_t size); memory allocation
void free(void *ptr); memory deallocation

Helper Function
size_t sizeof(type); returns size of data type in bytes

7

How do we interact with the heap?
Two Main Functions

void *malloc(size_t size); memory allocation
void free(void *ptr); memory deallocation

Helper Function
size_t sizeof(type); returns size of data type in bytes

8

How do we interact with the heap?
Two Main Functions

void *malloc(size_t size); memory allocation
void free(void *ptr); memory deallocation

Helper Function
size_t sizeof(type); returns size of data type in bytes

9

void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

10
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()!

11
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()!
● Allocates contiguous block of memory in heap

12
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● So far: size of array must be known at runtime
– Memory allocated on stack

● Don’t know array size at runtime? Use malloc()!
● Allocates contiguous block of memory in heap
● Returns pointer to allocated memory

13
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● Use sizeof(type) to get the size of a type

14
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● Use sizeof(type) to get the size of a type
● Recall: void* is a generic pointer type
● May need to cast memory to our desired type

15
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

void *malloc(size_t size)

● Use sizeof(type) to get the size of a type
● Recall: void* is a generic pointer type
● May need to cast memory to our desired type
● ...but we can usually just do something like this:

int* intArray = malloc(sizeof(int) * n);

16
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Check what malloc() returns!
Always check the return value
○ Returns a pointer to the memory block if success
○ Returns null pointer if failed

17
Adapted from slides by Ludwig Zhao and Dr.
Farmer

Check what malloc() returns!
Always check the return value
○ Returns a pointer to the memory block if success
○ Returns null pointer if failed

Example from lecture:
int length = 2;

int* int_array = NULL;

int_array = malloc (length * sizeof(int)) ;

if (int_array == NULL) return 1 ;

18
Adapted from slides by Ludwig Zhao and Dr.
Farmer

Check what malloc() returns!
Always check the return value
○ Returns a pointer to the memory block if success
○ Returns null pointer if failed

Example from lecture:
int length = 2;

int* int_array = NULL;

int_array = malloc (length * sizeof(int)) ;

if (int_array == NULL) return 1 ;

19
Adapted from slides by Ludwig Zhao and Dr.
Farmer

void free(void *ptr)
The bread to malloc’s butter
● Frees memory allocated by malloc() call

20

free()

malloc()

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

void free(void *ptr)
The bread to malloc’s butter
● Frees memory allocated by malloc() call
● Every malloc() must be free()’d eventually

– Else: memory leaks!

21

free()

malloc()

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

void free(void *ptr)
The bread to malloc’s butter
● Frees memory allocated by malloc() call
● Every malloc() must be free()’d eventually

– Else: memory leaks!
● Memory is freed, but technically speaking..

22

free()

malloc()

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

void free(void *ptr)
The bread to malloc’s butter
● Frees memory allocated by malloc() call
● Every malloc() must be free()’d eventually

– Else: memory leaks!
● Memory is freed, but technically speaking..

– Pointer value on stack not modified (too much
overhead)
• i.e. left your table at restaurant, but you still have the “text

reminder about your reservation”

23

free()

malloc()

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

void free(void *ptr)
The bread to malloc’s butter
● Frees memory allocated by malloc() call
● Every malloc() must be free()’d eventually

– Else: memory leaks!
● Memory is freed, but technically speaking..

– Pointer value on stack not modified (too much
overhead)
• i.e. left your table at restaurant, but you still have the “text

reminder about your reservation”
– Allocation on heap no longer valid for use

• i.e. left your table at restaurant, but your dirty dishes and
food scraps still there until cleaned

24

free()

malloc()

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

(not a metaphor for functionality, just to remind you to
make sure every malloc comes with a free. bread
without butter is not good imo)

void free(void *ptr)

● Do not free() memory not returned by malloc()

● Bad:

int i[] = {1, 2, 3, 4, 5};

free(*i); // DO NOT DO THIS

● Good:
int* intArray = malloc(sizeof(int) * 5);

free(intArray);

25Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Tips when calling free()
Always deallocate all the memory blocks before exit
● Do not deallocate the same memory blocks twice
● Set freed ptr to NULL ptr

free(linkedList);

linkedList = NULL;

26Adapted from slides by Ludwig Zhao

What is a linked list?
A data structure that uses dynamically allocated memory

27

What is a linked list?
A data structure that uses dynamically allocated memory

28

next

first node

second node

third node

What is a linked list?
A data structure that uses dynamically allocated memory

29

I think this is the head of
the train?

The caboose is the
NULL pointer signalling
the end of the train
(linked list)

Pointer to head
of linked list

NULL
POINTER

next

first node

second node

third node

What is a linked list?

30

DATA REF DATA REF DATA REF DATA REF

value address

NULL

head

(tail)

● Head pointer points to the first node (never lose your head
pointer!)

here is a cleaner train cartoon and diagram!

Adapted from slides by Ludwig Zhao

What is a linked list?

31

DATA REF DATA REF DATA REF DATA REF

value address

NULL

head

(tail)

● Head pointer points to the first node (never lose your head
pointer!)

● Each node has the data field(s) and a pointer points to the next
node, next

here is a cleaner train cartoon and diagram!

Adapted from slides by Ludwig Zhao

What is a linked list?

32

DATA REF DATA REF DATA REF DATA REF

value address

NULL

head

(tail)

● Head pointer points to the first node (never lose your head
pointer!)

● Each node has the data field(s) and a pointer points to the next
node, next

● The last node has the next pointer points to null ptr

here is a cleaner train cartoon and diagram!

Adapted from slides by Ludwig Zhao

Other notes on linked lists

33

● As program runs, memory is dynamically allocated

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Other notes on linked lists

34

● As program runs, memory is dynamically allocated
● More efficient:

○ All memory allocated is used
○ Can grow/shrink data structure as needed

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Other notes on linked lists

35

● As program runs, memory is dynamically allocated
● More efficient:

○ All memory allocated is used
○ Can grow/shrink data structure as needed

● Cons:
○ Annoying to traverse
○ Need to know how to work with pointers

“pointers put the link in linked lists”

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

addToList.c

Sample Code Discussion

We use a struct to create nodes

37

typedef struct studentStruct {
int age;
char *name;
struct studentStruct *next;

} student;

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Heap Allocation Example

38

X

NULL

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Heap Allocation Example

39

NULL

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Heap Allocation Example

40

X

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Heap Allocation Example

41
Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Double Pointers

42

stack

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Double Pointers

43

stack

heap

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Double Pointers

44

heap

stack

Adapted from slides by Makarios Chung,
Alexandra Ulven, and Daniel Sullivan

Debugging practice

45

