
Week 11: Strings in C
CIT-593, Spring 2022

Sarah Santos and Le Pan
March 30, 2022

1

What are strings in C?

A string is an array of characters (char) with a null terminator.

2

What are strings in C?

A string is an array of characters (char) with a null terminator.

Character Array

String
(null-terminated)

char not_string[5] = {‘S’,‘a’,‘r’,‘a’,‘h’}

(no null terminator)

3

What are strings in C?

A string is an array of characters (char) with a null terminator.

Character Array

String
(null-terminated)

char not_string[5] = {‘S’,‘a’,‘r’,‘a’,‘h’}

(no null terminator)

char not_string[6] = {‘S’, ‘a’,‘r’,‘a’,‘h’,‘\0’}

 null terminator - simply a 0 in memory that signifies end of a string

4

The null terminating char
The hero all strings deserve. Preventing segfaults since 1972.

‘\0’
Not all heroes
wear capes. This
one just wears a
little backslash
symbol.

If you have a
string without a
null terminating
character, you
are going to
have a bad time.
segfault or
read/write
error.
Adapted from slides by Katie
Pizziketti/Ben Barba! 5

Different examples of strings
The following declarations are the same:
char my_string[6] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

6

Different examples of strings
The following declarations are the same:
char my_string[6] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

char my_string[6] = “Hello”; ← same (compiler adds null terminator for you)

7

Different examples of strings
The following declarations are the same:
char my_string[6] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

char my_string[6] = “Hello”; ← same (compiler adds null terminator for you)

We also don’t have to include the size in brackets if we
immediately initialize it during declaration:
char my_string[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

8

Different examples of strings
The following declarations are the same:
char my_string[6] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

char my_string[6] = “Hello”; ← same (compiler adds null terminator for you)

We also don’t have to include the size in brackets if we
immediately initialize it during declaration:
char my_string[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};

char my_string[] = “Hello”; ← same (compiler adds null terminator for you)

9

What is a “string literal”?
● A string literal is a string enclosed in double-quotes

– e.g., “hey”

Adapted from slides by Ben Barba! 10

What is a “string literal”?
● A string literal is a string enclosed in double-quotes

– e.g., “hey”
● Character array initialized with string literal:

– char my_string[] = “Sarah”;

Adapted from slides by Ben Barba! 11

What is a “string literal”?
● A string literal is a string enclosed in double-quotes

– e.g., “hey”
● Character array initialized with string literal:

– char my_string[] = “Sarah”;
● Pointer to a string literal:

– char* strLit = “I’m literally a string literal.”

– Declared with char* (pointer to global memory will be on the stack)
– The string literal is stored in global/static memory (not the stack).
– READ-ONLY

Adapted from slides by Ben Barba! 12

You cannot edit pointers to string literals!
You cannot edit a pointer to a string literal
char* strLit = “You literally cannot change me.”;

strLit[0] = ‘y’; // NOT ALLOWED. Literals are read-only

Editing a character array is completely fine
char[] myStr = “I’m not scared of change.”;

myStr[0] = ‘i’; // this is legal :)

13

Representation in Memory
How is this string represented in
memory?
char my_string[6] = “Hello”;

x7FFF

x7FFE

x7FFD

x7FFC

x7FFB

x7FFA

x7FF9

x7FF8

x7FF7

x7FF6

x7FF5

x7FF4

FP

RA

RV

arguments

← R5

14

Representation in Memory
How is this string represented in
memory?
char my_string[6] = “Hello”;

● The name of the string becomes a label for the
starting address

x7FFF

x7FFE

x7FFD

x7FFC

x7FFB

x7FFA

x7FF9

x7FF8

x7FF7

x7FF6

x7FF5

x7FF4

‘H’

FP

RA

RV

arguments

(my_string) my_string[0]

← R5

15

Representation in Memory

x7FFF

x7FFE

x7FFD

x7FFC

x7FFB

x7FFA

x7FF9

x7FF8

x7FF7

x7FF6

x7FF5

x7FF4

‘H’

‘e’

‘l’

‘l’

‘o’

‘\0’

FP

RA

RV

arguments

(my_string) my_string[0]

my_string[1]

my_string[2]

my_string[3]

my_string[4]

my_string[5]

← R5

How is this string represented in
memory?
char my_string[6] = “Hello”;

● The name of the string becomes a label for the
starting address

16

Pointer syntax
char myString[] = “Hello”;

char* stringPntr = NULL;

Adapted from slides by Katie
Pizziketti/Ben Barba! 17

Pointer syntax
char myString[] = “Hello”;

char* stringPntr = NULL; //these are the same!

char *stringPntr = NULL; //these are the same!

stringPntr = myString;

Adapted from slides by Katie
Pizziketti/Ben Barba! 18

Pointer syntax
char myString[] = “Hello”;

char* stringPntr = NULL; //these are the same!

char *stringPntr = NULL; //these are the same!

stringPntr = myString;

char** doublePntr = &stringPntr;

//a double pointer is a pointer to a pointer.

Adapted from slides by Katie
Pizziketti/Ben Barba! 19

Pointer syntax
char myString[] = “Hello”;

char* stringPntr = NULL; //these are the same!

char *stringPntr = NULL; //these are the same!

stringPntr = myString;

char** doublePntr = &stringPntr;

//a double pointer is a pointer to a pointer.

*doublePntr is equivalent to stringPntr which is equivalent to myString

**doublePntr is equivalent to *stringPntr which is equivalent to myString[0]

Adapted from slides by Katie
Pizziketti/Ben Barba! 20

Pointer syntax
char myString[] = “Hello”

char* stringPntr = NULL; //these are the same!

char *stringPntr = NULL; //these are the same!

stringPntr = myString;

char** doublePntr = &stringPntr;

//a double pointer is a pointer to a pointer.

*doublePntr is equivalent to stringPntr which is equivalent to myString

**doublePntr is equivalent to *stringPntr which is equivalent to myString[0]

Pointers need to have a type.
● Otherwise, the computer will not know how to

interpret the value returned when dereferencing
the pointer.

● Also needed for pointer arithmetic

A void pointer (void*) needs to be
cast to a type before you can
dereference it.
int num = *(int*)aVoidPtr

Adapted from slides by Katie
Pizziketti/Ben Barba! 21

Pointers vs Arrays
An array is a label for a memory address.

Pointer:

●

Array:

●
Pointer to
array:

Array:

Adapted from slides by Katie
Pizziketti/Ben Barba! 22

Pointers vs Arrays
An array is a label for a memory address.

Pointer:

● Can be dereferenced with *

Array:

● Can’t be dereferenced, but
elements can be directly
accessed by their index

Pointer to
array:

*pntr;

Array:

array; OR
array[0];

Adapted from slides by Katie
Pizziketti/Ben Barba! 23

Pointers vs Arrays
An array is a label for a memory address.

Pointer:

● Can be dereferenced with *
● Can use pointer arithmetic,

such as incrementing the
pointer, which will set the
pointer contents to address +
1.

Array:

● Can’t be dereferenced, but
elements can be directly
accessed by their index

● Can access elements in array
using brackets: array[0]

Pointer to
array:

*pntr;

*(pntr +1);

*(pntr + 2)

Array:

array; OR
array[0];

array[1];

array[2];

Adapted from slides by Katie
Pizziketti/Ben Barba! 24

Pointers vs Arrays
An array is a label for a memory address.

Pointer:

● Can be dereferenced with *
● Can use pointer arithmetic,

such as incrementing the
pointer, which will set the
pointer contents to address +
1.

● Can change to point to
different elements in an array

Array:

● Can’t be dereferenced, but
elements can be directly
accessed by their index

● Can access elements in array
using brackets: array[0]

● Can’t be incremented to
access a different element

Pointer to
array:

*pntr;

*(pntr +1);

*(pntr + 2)

Array:

array; OR
array[0];

array[1];

array[2];

Adapted from slides by Katie
Pizziketti/Ben Barba! 25

Pointers vs Arrays
An array is a label for a memory address.

Pointer:

● Can be dereferenced with *
● Can use pointer arithmetic,

such as incrementing the
pointer, which will set the
pointer contents to address +
1.

● Can change to point to
different elements in an array

● Can be returned from a
function

Array:

● Can’t be dereferenced, but
elements can be directly
accessed by their index

● Can access elements in array
using brackets: array[0]

● Can’t be incremented to
access a different element

● Can’t be returned from a
function, but CAN be
passed as an argument to
a function

Pointer to
array:

*pntr;

*(pntr +1);

*(pntr + 2)

Array:

array; OR
array[0];

array[1];

array[2];

Adapted from slides by Katie
Pizziketti/Ben Barba! 26

Debugging practice

27

String Functions (time-permitting)

Walk through function signatures and expected functionality:
● https://www.tutorialspoint.com/c_standard_library/c_function_strlen.htm
● https://www.tutorialspoint.com/c_standard_library/c_function_strcpy.htm
● https://www.tutorialspoint.com/c_standard_library/c_function_strchr.htm
● https://www.tutorialspoint.com/c_standard_library/c_function_strcat.htm
● https://www.tutorialspoint.com/c_standard_library/c_function_strcmp.htm

28

https://www.tutorialspoint.com/c_standard_library/c_function_strlen.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcpy.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strchr.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcat.htm
https://www.tutorialspoint.com/c_standard_library/c_function_strcmp.htm

